Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella.

Identifieur interne : 000242 ( Main/Exploration ); précédent : 000241; suivant : 000243

Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella.

Auteurs : Chiranjit Chowdhury [Inde, États-Unis] ; Thomas A. Bobik [États-Unis]

Source :

RBID : pubmed:31674899

Descripteurs français

English descriptors

Abstract

Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron-sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently, in vivo and in vitro studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD+ and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron-sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron-sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.

DOI: 10.1099/mic.0.000872
PubMed: 31674899
PubMed Central: PMC7137781


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of
<i>Salmonella</i>
.</title>
<author>
<name sortKey="Chowdhury, Chiranjit" sort="Chowdhury, Chiranjit" uniqKey="Chowdhury C" first="Chiranjit" last="Chowdhury">Chiranjit Chowdhury</name>
<affiliation wicri:level="1">
<nlm:affiliation>Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313</wicri:regionArea>
<wicri:noRegion>UP-201313</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bobik, Thomas A" sort="Bobik, Thomas A" uniqKey="Bobik T" first="Thomas A" last="Bobik">Thomas A. Bobik</name>
<affiliation wicri:level="4">
<nlm:affiliation>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31674899</idno>
<idno type="pmid">31674899</idno>
<idno type="doi">10.1099/mic.0.000872</idno>
<idno type="pmc">PMC7137781</idno>
<idno type="wicri:Area/Main/Corpus">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000205</idno>
<idno type="wicri:Area/Main/Curation">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000205</idno>
<idno type="wicri:Area/Main/Exploration">000205</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of
<i>Salmonella</i>
.</title>
<author>
<name sortKey="Chowdhury, Chiranjit" sort="Chowdhury, Chiranjit" uniqKey="Chowdhury C" first="Chiranjit" last="Chowdhury">Chiranjit Chowdhury</name>
<affiliation wicri:level="1">
<nlm:affiliation>Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313</wicri:regionArea>
<wicri:noRegion>UP-201313</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bobik, Thomas A" sort="Bobik, Thomas A" uniqKey="Bobik T" first="Thomas A" last="Bobik">Thomas A. Bobik</name>
<affiliation wicri:level="4">
<nlm:affiliation>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiology (Reading, England)</title>
<idno type="eISSN">1465-2080</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehydes (metabolism)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Culture Media (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>NAD (metabolism)</term>
<term>Organelles (genetics)</term>
<term>Organelles (metabolism)</term>
<term>Permeability (MeSH)</term>
<term>Propylene Glycol (metabolism)</term>
<term>Salmonella (genetics)</term>
<term>Salmonella (growth & development)</term>
<term>Salmonella (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aldéhydes (métabolisme)</term>
<term>Milieux de culture (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>NAD (métabolisme)</term>
<term>Organites (génétique)</term>
<term>Organites (métabolisme)</term>
<term>Perméabilité (MeSH)</term>
<term>Propylène glycol (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Salmonella (croissance et développement)</term>
<term>Salmonella (génétique)</term>
<term>Salmonella (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aldehydes</term>
<term>Bacterial Proteins</term>
<term>NAD</term>
<term>Propylene Glycol</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Organelles</term>
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Organites</term>
<term>Protéines bactériennes</term>
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Organelles</term>
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aldéhydes</term>
<term>NAD</term>
<term>Organites</term>
<term>Propylène glycol</term>
<term>Protéines bactériennes</term>
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation</term>
<term>Permeability</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Milieux de culture</term>
<term>Modèles biologiques</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Mutation</term>
<term>Perméabilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron-sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently,
<i>in vivo</i>
and
<i>in vitro</i>
studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD
<sup>+</sup>
and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron-sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron-sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31674899</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1465-2080</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>165</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Microbiology (Reading, England)</Title>
<ISOAbbreviation>Microbiology (Reading)</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of
<i>Salmonella</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1355-1364</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1099/mic.0.000872</ELocationID>
<Abstract>
<AbstractText>Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron-sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently,
<i>in vivo</i>
and
<i>in vitro</i>
studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD
<sup>+</sup>
and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron-sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron-sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chowdhury</LastName>
<ForeName>Chiranjit</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bobik</LastName>
<ForeName>Thomas A</ForeName>
<Initials>TA</Initials>
<AffiliationInfo>
<Affiliation>Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI081146</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiology (Reading)</MedlineTA>
<NlmUniqueID>9430468</NlmUniqueID>
<ISSNLinking>1350-0872</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000447">Aldehydes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6DC9Q167V3</RegistryNumber>
<NameOfSubstance UI="D019946">Propylene Glycol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AMJ2B4M67V</RegistryNumber>
<NameOfSubstance UI="C005556">propionaldehyde</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000447" MajorTopicYN="N">Aldehydes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015388" MajorTopicYN="N">Organelles</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010539" MajorTopicYN="N">Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019946" MajorTopicYN="N">Propylene Glycol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012475" MajorTopicYN="N">Salmonella</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Salmonella</Keyword>
<Keyword MajorTopicYN="Y">carboxysome</Keyword>
<Keyword MajorTopicYN="Y">microcompartment</Keyword>
<Keyword MajorTopicYN="Y">vitamin B12</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31674899</ArticleId>
<ArticleId IdType="doi">10.1099/mic.0.000872</ArticleId>
<ArticleId IdType="pmc">PMC7137781</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1971;110(4):378-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4932889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Nov;192(22):6056-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20851901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2019 Jul 19;8(7):1642-1654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31242391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2017 Mar 28;199(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28138097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2010;64:391-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20825353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2008 Nov;30(11-12):1084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 27;326(5957):1205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Oct;193(20):5623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1951 Sep;62(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14888646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Jan;18(1):108-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19177356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2012 May;14(3):242-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21946160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2018 Feb;14(2):142-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29227472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2016 Apr 27;138(16):5262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26704697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2013;23(4-5):290-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23920492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2015 Apr 17;4(4):444-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25117559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2013 Aug;24(4):627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Feb;67(Pt 2):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2013;23(4-5):308-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23920494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2016 Nov;100(21):9187-9200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27450681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25713376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Sep 18;392(2):319-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2013 Sep;77(3):357-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24006469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2017 Nov 17;6(11):2145-2156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28826205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Apr;80(7):2193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Mar;193(6):1385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2014 Sep;78(3):438-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 18;287(21):17729-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22461622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Dec;187(23):8039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2018 Apr 24;200(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29507086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 15;6:36899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27845382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Jul;74(13):4241-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2016 Feb 27;428(5 Pt B):916-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2017 May 5;13(5):e1005525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28475631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2015 Jun;24(6):956-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25752492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2019 May 7;27(5):749-763.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30833088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Jun 12;426(12):2328-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2013 Jan 20;163(2):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7509-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 22;319(5866):1083-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18292340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 23;283(21):14366-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Mar;184(5):1253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jul;87(1):66-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26991644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2008 Oct;19(5):492-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Feb;99(3):497-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26448059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Dec;81(24):8315-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26407889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 2;290(40):24519-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 5;309(5736):936-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Apr 23;38(2):305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20417607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 May;70(5):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22428024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10829079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 31;288(22):16055-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1973 Nov 9;182(4112):584-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4355679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1968 Jul;96(1):215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4874308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2011 Apr;21(2):223-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Sep;181(17):5317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10464203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Jun;5(6):e144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17518518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2015 Jul;197(14):2392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25962918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Apr;194(8):1912-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22343294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14995-5000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22927404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 23;356(6344):1293-1297</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28642439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 1;327(5961):81-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Sep;101(5):770-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27561553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 11;6:24359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27063436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2010 Apr;14(2):174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2014 Jul 18;3(7):454-465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 26;285(48):37838-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Aug;27(8):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Apr;56(4):943-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2017 Aug 31;121(34):8149-8154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28829618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 May 29;426(11):2217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2017 Oct 20;6(10):1880-1891</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28585808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Apr;190(8):2966-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2014 Mar;9(3):348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24323373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2013 Feb;22(2):179-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23188745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2019 Jul;54:286-291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31075444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Oct;181(19):5967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Apr;183(8):2463-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11274105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jul 23;9(1):2881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30038362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2017 May;26(5):1086-1092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28241402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Oct;98(2):193-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26148529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Chowdhury, Chiranjit" sort="Chowdhury, Chiranjit" uniqKey="Chowdhury C" first="Chiranjit" last="Chowdhury">Chiranjit Chowdhury</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Chowdhury, Chiranjit" sort="Chowdhury, Chiranjit" uniqKey="Chowdhury C" first="Chiranjit" last="Chowdhury">Chiranjit Chowdhury</name>
</region>
<name sortKey="Bobik, Thomas A" sort="Bobik, Thomas A" uniqKey="Bobik T" first="Thomas A" last="Bobik">Thomas A. Bobik</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31674899
   |texte=   Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31674899" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020